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Reduced phase error through optimized control of a superconducting qubit
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Minimizing phase and other errors in experimental quantum gates allows higher fidelity quantum processing.
To quantify and correct for phase errors, in particular, we have developed an experimental metrology—amplified
phase error (APE) pulses—that amplifies and helps identify phase errors in general multilevel qubit architectures.
In order to correct for both phase and amplitude errors specific to virtual transitions and leakage outside of
the qubit manifold, we implement “half derivative,” an experimental simplification of derivative reduction by
adiabatic gate (DRAG) control theory. The phase errors are lowered by about a factor of five using this method
to ∼1.6◦ per gate, and can be tuned to zero. Leakage outside the qubit manifold, to the qubit |2〉 state, is also
reduced to ∼10−4 for 20% faster gates.
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I. INTRODUCTION

Many candidate systems for quantum computation display
several quantum energy levels, with computing architectures
either employing just two of these levels [1–12], or using
three or more in (“d-level”) qudit-based approaches [2,6,13].
Achieving good control over the computational states,
while avoiding interference from the noncomputational ones,
requires measuring and understanding the source and mag-
nitude of error-generating processes as well as correcting
for such errors. For example, gate operations in the super-
conducting phase [2] and transmon [6] qubits, which are
relatively weakly anharmonic, can generate leakage from
the computational manifold to higher (noncomputational)
levels (“manifold leakage”). However, by careful experimental
design one can identify and minimize the source of such errors,
thereby improving qubit control.

Previous experiments identified the amplitude errors asso-
ciated with manifold leakage by using error budgeting and
metrology [14]. By directly measuring leakage using the
Ramsey error-filter protocol, this error is now understood and
can be suppressed to ∼10−4 [14], at or near the threshold
for fault-tolerant quantum computing [15,16]. Randomized
benchmarking, an alternative approach to measuring gate error,
relies on a many-pulse protocol, effectively averaging over the
Bloch sphere to quantify gate fidelity [16,17]. Unfortunately,
this approach optimizes a single value (gate fidelity) and does
not distinguish between amplitude and phase errors. Quantum
process tomography by contrast provides a complete analysis
of gate operation [1,18,19], but requires calibrated Xπ/2 and
Yπ/2 pulses, which can themselves be error sources.

Phase errors also contribute to overall gate error, but the
relative contribution differs from amplitude-related errors.
Consequently, a method is needed to separately quantify the
phase error generated by a gate. This will aid in identifying
the source of these errors, improve calibration of high-fidelity
tomography pulses, and provide a benchmark for optimizing
control pulses.

*martinis@physics.ucsb.edu

In this paper we explicitly show that gate errors can be
separated into amplitude and phase errors. Virtual excitations
to noncomputational levels (e.g., the |2〉 state) during gate
operation result in phase errors, while real excitations after
the gate produce amplitude errors. In order to better quantify
the phase errors, we introduce a metrology, “amplified phase
error” (APE) pulses, which uses a Ramsey fringe experiment to
measure and amplify this ubiquitous source of error. We focus
on errors related to π/2 pulses, because such pulses provide the
basis for tomography and are essential in algorithms. We also
demonstrate a simplified experimental version of the protocol
[20] termed “derivative removal by adiabatic gates” (DRAG)
[15], which we call “half-derivative” (HD) pulses. By using
HD pulses together with APE metrology, we measure and
reduce the phase error to 1.6◦ per gate, a factor of five reduction
from unoptimized performance. As a demonstration of this
method, we perform quantum state tomography to map out the
trajectories of typical HD pulses, including a π pulse and a
rotation about an arbitrary axis, using X, Y , and Z controls
to implement an (off-equator) Hadamard gate. In addition, we
show that APE metrology is a universal tool for probing phase
errors on any of the higher qudit levels.

II. QUBIT CONTROL

In the experiments described here, we used a single
superconducting phase qubit with T1 = 450 ns and T echo

2 =
390 ns. The circuit layout and operation have been described
previously [2]. We have three-axis control over the qubit:
Microwave pulses of arbitrary amplitude and phase, resonant
with the qubit |1〉 ↔ |0〉 transition frequency f10, produce
rotations about any axis in the x-y plane, while current pulses
on the qubit bias line adiabatically change the qubit frequency,
causing phase accumulation between |0〉 and |1〉, generating
z-axis rotations [21]. The |2〉 ↔ |1〉 transition frequency f21

differs from f10 by �/2π = f21 − f10 ∼ −200 MHz.
Nonideal qubit behavior can arise from both leakage at the

end of the gate and virtual transitions to higher states during
on-resonant operations. The leakage is an amplitude error,
representing loss of probability to states outside the manifold.
Leakage can be reduced to ∼10−4 by careful shaping of the
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microwave envelope and choosing the correct gate duration,
which scales as 1/� [14,22].

III. PHASE ERROR

The phase error arising from virtual transitions (especially
to the |2〉 state) can be modeled as effective qubit rotations
about the z axis. We first restrict ourselves to simple gates
comprising π and π/2 rotations. An Xπ/2 pulse (a rotation
about the x axis by an angle θ = π/2) ideally produces the
transformation,

Xπ/2 = e−iσx
π
4 = 1√

2

(
1 −i

−i 1

)
, (1)

where σx is one of the Pauli matrices. From numerical simula-
tions of our multilevel qubit, we find that this transformation,
expressed in quantum circuit language, is instead

X′
π/2 = e−iε′

ZεXπ/2Zε, (2)

where Zε is the phase error of interest and 0 < ε � 1
(see Appendix B). The leading term in Eq. (2) is a global
phase and can be ignored. We note that Eq. (2) differs from
X�

π/2 = Z−εXπ/2Zε , which corresponds to a rotation about a
new axis ε away from the x axis in the x-y plane.

The phase error ε is a function of both the rotation angle θ

and the gate time tg . From simulations, we find that ε ∼ θ2/tg .
Longer gate times decrease the virtual transitions and
consequently reduce the phase error, consistent with the
ac-Stark effect [23].

A. Amplifying phase error

In order to best reduce this error, we first sought a protocol
that would amplify the error ε (see Appendix B). If we consider
a 2π rotation generated by concatenating four π/2 pulses, we
find from Eq. (2) that X′4

π/2 = −e−4iε′
I , where I is the identity

(see Appendix B). A concatenated 2π rotation thus does not
accumulate the relative phase error.

We next examine the pseudoidentity operation that is
formed by concatenating positive and negative θ rotations.
For a first-order expansion with ε � 1 we find

I ′
θ = (ZεXθZε)(ZεX−θZε)

≈
(

1 + i(cos θ − 1)ε −(sin θ )ε

(sin θ )ε 1 − i(cos θ + 3)ε

)
, (3)

where Xθ is an arbitrary rotation of θ about the x axis (see
Appendix B). For θ = π we find that I ′

π = e−2iε′
I , which

is similar to the 2π rotation, as the phase error ε cancels.
However, for θ = π/2 we find

I ′
π/2 = (ZεX−π/2Zε)(ZεXπ/2Zε)

≈
(

1 − iε ε

−ε 1 − 3iε

)
, (4)

showing phase error accumulation.

B. Measuring phase error

To measure this error, we combine the result from Eq. (4)
with a Ramsey fringe experiment, forming the “amplified
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FIG. 1. (Color online) Multilevel qubit and amplified phase error
(APE) metrology. (a) Bloch sphere indicating the axes of rotations
and a qubit with three energy levels, illustrating phase error due to
virtual transitions to the |2〉 state. While performing on-resonance
|0〉 ↔ |1〉 gate operations at frequency f10, virtual transitions to |2〉
create a phase change in |1〉. (b) (Left) Single-control (X-quadrature)
APE pulse sequence, where the pulse shape represents the microwave
envelope, with τ denoting the full width at half maximum (FWHM).
All control pulses are separated in time by 2τ . Ramsey-fringe
experiments are modified by I ′n

π/2 (n ∈ {0,1,3,5}) pseudoidentity
operations in between the first Xπ/2 and last φπ/2 pulses. At the end
the Z control line is pulsed to measure the probability of |1〉. (Right)
The probability of measuring |1〉 as a function of the rotation axis φ

of the final π/2 pulse; each data point is repeated 1200 times. Fits
to extract the phase shift are plotted as lines with the data (dots).
(c) (Left) Same pulse sequence as in (a), but with the addition of
Y -quadrature “half-derivative” pulses, as discussed in the text. (Right)
The data (dots) with fits (lines) show small phase shifts for the HD
pulse sequence.

phase error” (APE) sequence. The APE sequence consists of
inserting n successive I ′

π/2 pseudoidentity operations between
the π/2 pulses that define a Ramsey fringe measurement
[Fig. 1(b)]. The phase error is amplified by 2n for n

applications of the pseudoidentity operation,

I ′n
π/2 ≈ (Z2ε)n = Z2nε. (5)

By applying APE pulses to the state |ψ〉 = (|0〉 − i|1〉)/√2
followed by a final φπ/2 pulse, we directly probe the phase
error due to the Xπ/2 pulses.

Figure 1(b) shows the probability of measuring the |1〉 state
versus rotation axis φ of the final φπ/2 pulse for I ′n

π/2 (n = 0,

1,3,5) pseudoidentity operations. Consistent with Eq. (5), the
phase error scales with n. For n = 5 in Fig. 1(b), the final
pulse is 83◦ out of phase, corresponding to a 10× phase error
amplification from a total of 11 pulses (10 from the APE
sequence and 1 from the initial Xπ/2), yielding a 7.3◦ phase
error per gate (see Fig. 6). The oscillation amplitude is also
reduced, due to decoherence.
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C. Correcting phase error

To correct the phase error, we employ the derivative
reduction by adiabatic gates (DRAG) protocol [15]. The
original DRAG prescription uses three controls, X, Y , and
Z. The X control provides the original envelope shaping to
the microwaves, which we implemented as a Gaussian in time
with arbitrary amplitude A, X = A exp[−4 ln(2)(t − t0)2/τ 2],
where τ is the full width at half maximum (FWHM) and
t0 the time at the center of the pulse. The quadrature control
Y = −Ẋ/� is the time derivative of the X control scaled by the
nonlinearity �. The Z control produces a dynamic detuning
pulse during the gate that removes the effective z rotations
from the virtual transitions.

We find both in simulations and experiment that the Y

and Z controls are not independent (see Appendix C). For
experimental simplicity, we set Z to zero and compensate
by reducing the magnitude of the Y control by 1/2, to form
the so-called “half-derivative” (HD) protocol. For a Gaussian
envelope on the X control, the HD pulses are as illustrated in
Fig. 1(c) and differ from the DRAG pulses by the quadrature
controls, Y = −Ẋ/(2�), Z = 0.

The HD pulse sequence in Fig. 1(c) is the same as Fig. 1(b),
with the addition of the Y control. Data are plotted for the same
number of I ′

π/2 pseudoidentity operations. We find by applying
the HD protocol the phase error is reduced to 1.6◦ per gate,
and can be further minimized by tuning the amplitude of the
derivative pulse.

IV. AMPLITUDE ERROR

HD pulses also reduce the leakage to the |2〉 state. Plotted
in Fig. 2 are the data from a Ramsey error filter [14] for both
single-control Gaussian and HD pulses. A 6-ns (FWHM) HD
Xπ pulse gives a |2〉 state probability of 10−4, almost an order
of magnitude better than a non-HD pulse of the same width,
which consequently provides a 20% faster gate [14].

V. DEMONSTRATING CONTROL

With calibrated Xπ/2 and Yπ/2 pulses, we can perform quan-
tum state tomography (QST) without worry of miscalibrated

10-3

4.5 5.0 6.0 7.06.55.5

|2
  

st
at

e 
pr

ob
ab

ili
ty

τ [ns]

10-1

10-5

pulse width

10-2

10-4

FIG. 2. (Color online) Amplitude errors due to leakage into the
|2〉 state from an Xπ pulse. Plot of |2〉 error versus pulse width
(FWHM) τ for single-control Gaussian (black dots) and HD (blue
squares) π pulses. The 6-ns HD pulse produces ×5 lower error and
20% faster gates. The lines are three-state simulations using Gaussian
(solid black) and HD (dashed blue) pulses.
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FIG. 3. (Color online) Gate trajectories using quantum state
tomography (QST) for single-control and HD pulses. (a) (Left)
Pulse sequence for an X rotation. A Gaussian pulse of fixed length
(FWHM = 6 ns) and varying amplitude completes the rotation angle
to θ = π . QST is performed at every incremental increase of
amplitude. (Right) The reconstructed quantum state data are plotted
on the Bloch sphere from two perspectives, looking down the x and the
−y axes. (b) Same as in (a) except using HD (X and Y simultaneous
control) pulses to perform the X rotation. No phase error is observed.
(c) (Left) Pulse sequence of a two-part trajectory using HD pulses
and Z control to form a Hadamard gate. X, Y , and Z controls are
fixed-length (FWHM = 6 ns) pulses with increasing amplitudes to
execute π/

√
2 rotations about X and Z. Trajectory 2 pulses ramp

up only after trajectory 1 pulses are at full amplitude. (Right) The
reconstructed QST data. Each trajectory completes a Hadamard gate,
taking |0〉 → (|0〉 + |1〉)/√2 → |0〉.

measurement axes. As a practical demonstration of how HD
pulses reduce phase error, we perform QST [21] with and
without HD. Figure 3(a), panel (b), shows the pulse sequence
and data for the Gaussian pulses (HD pulses) during an Xθ

rotation. The pulses are of fixed length (FWHM = 6 ns) with
variable amplitude θ . QST is performed at each incremental
increase of amplitude and the quantum state is recreated in the
Bloch sphere as shown to the right of each of the respective
pulse sequences. In contrast with the single control Gaussian
pulses, the HD pulses execute a meridian trajectory with no
phase error with increasing θ .

The final HD demonstration is an (off-equator) Hadamard
gate, shown in Fig. 3(c), which uses all three control lines
(see Appendix D). We incrementally increase the amplitude
of all three control lines using fixed length (FWHM = 6 ns)
pulses to perform rotations from 0 to π/

√
2 about both the x

and z axes, which at full amplitude gives the Hadamard gate
H [|0〉 → (|0〉 + |1〉)/√2]. The trajectory concludes with a
second set of pulses to complete the identity operation I =
HH , and returning to the initial state (|0〉 + |1〉)/√2 → |0〉.
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FIG. 4. (Color online) Multilevel qudit and APE metrology for
the |1〉 ↔ |2〉 transition. (Inset) The four energy levels of the qudit
illustrate the nearly symmetric virtual transitions to states |3〉 and
|0〉 that mostly cancel the phase error during the f21 resonant drive.
(Left) Pulse sequence showing (π )10 for a |0〉 → |1〉 transition then a
Ramsey fringe with the pseudoidentity operation on the |1〉 ↔ |2〉
transition. (Right) The probability of measuring the |2〉 state as
a function of the rotation axis of the final (φπ/2)21 pulse for n ∈
{0,1,3,5} pseudoidentity operations. With only a single-control pulse
(no HD correction), the phase error is 1.1◦ per gate.

VI. AMPLIFIED PHASE ERROR FOR HIGHER LEVELS

We also consider the challenge of optimizing control pulses
for each d level of a qudit [2]. Tomography verifies the
operation, but again relies on the calibrations of π/2 pulses.
In principle, APE provides the necessary phase calibration
certification for tomography.

To demonstrate the general utility of the APE protocol,
we implement this metrology on the qudit level for state |2〉.
We first calibrate the (π )10 and (π )21 pulses to generate the
|0〉 → |1〉 and |1〉 → |2〉 transitions, respectively [2]. As
shown in Fig. 4, we first prepare the |1〉 state via an HD π pulse
so that we can then perform a Ramsey fringe experiment using
the |1〉 and |2〉 states. The APE pulses are applied between the
first and last (π/2)21 pulses, only now resonant with f21. The
data are for single-controlled Gaussian envelope pulses (i.e.,
no HD protocol for the |1〉 → |2〉 pulses).

Surprisingly, after n = 5 pseudoidentity operations, only
12◦ of phase error is measured, equivalent to 1.1◦ per gate.
We offer a qualitative interpretation: the relatively small an-
harmonicity of the phase qudit, combined with the symmetric
virtual transitions to the |3〉 and |0〉 states, provide comple-
mentary phase shifts that partially cancel out the phase error.

VII. CONCLUSION

In conclusion, we introduced a metrology tool, amplified
phase error (APE) pulses, which can amplify the phase error by
an order of magnitude. Together with APE and half-derivative
pulses, our simplified variant of DRAG [15], we identify and
reduce phase errors to 1.6◦ per gate. By simply rescaling
the analytic form for the HD pulses, the phase error can be
completely removed. The HD pulses also can increase gate
speed by 20%.
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APPENDIX A: TRACKING QUBIT FREQUENCY

Optimized qubit control pulses rely on a precise measure-
ment of the qubit transition frequency. After performing spec-
troscopy to find the qubit frequency f10 to within ∼1 MHz, we
fix the gate time τ and tune the microwave amplitude to execute
a π rotation. We verify that the computed amplitude for π/2
rotation is indeed half that for a π rotation by performing two
consecutive π/2 rotations and comparing the probability P1

between that of a single π rotation.
Next, to precisely measure the qubit frequency, we use a

Ramsey fringe experiment, where the final φπ/2 pulse rotates
at 50 MHz about a variable axis on the equator of the Bloch
sphere. A frequency shift in the oscillations of P1 different
from 50 MHz is the amount the microwave drive is detuned
from the qubit frequency. Correcting for this offset precisely
tunes the microwave drive to the qubit frequency to within
1 part in 104 (sub-MHz resolution), which is consistent with
limits set from 1/f flux-noise fluctuations [24].

We also can perform a more complete test [two-dimensional
(2D) scans] of this frequency calibration by noting that
the phase error is ε = δf δt if the microwave drive is δf

off resonance from the qubit frequency for some time δt .
Therefore, we verify that the microwave carrier matches the
qubit frequency for the entire δt of the APE sequences via
a Ramsey fringe experiment as shown in Fig. 5. Figure 5(b)
shows the data for two different detunings: (left) δf = 10 MHz
and (right) δf < 1 MHz (after performing the calibration de-
scribed previously). When the microwave drive is detuned by
δ = 10 MHz the data show a distinct tilt and clear oscillations
with a frequency of 10 MHz. After calibration the data have no
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FIG. 5. (Color online) Tracking the qubit frequency f10. (a) Ram-
sey fringe sequence that consists of two Gaussian-shaped π/2 pulses,
separated in time by t , followed by a measure pulse on the Z control
tuned to tunnel the |1〉 state. The first π/2 pulse defines the rotation
axis; by convention this is the x axis. The second pulse is delayed by a
time t with variable rotation axis φ. (b) Plots of P1 versus separation
time t and phase φ for pulse sequence in (a). (Left) Microwave drive
is 10 MHz detuned from the qubit frequency f10. (Right) Data taken
after calibration; microwaves detuned less than 1 MHz from the qubit
frequency.

042339-4



REDUCED PHASE ERROR THROUGH OPTIMIZED CONTROL . . . PHYSICAL REVIEW A 82, 042339 (2010)

beating and therefore no sign of a detuned microwave drive.
This confirms that the qubit frequency is tracked precisely
throughout the duration of the desired (amplified phase error)
sequences. We note that the APE sequences are shorter than
the dephasing time.

To compute the nonlinearity �/2π = f21 − f10 for use in
the HD protocol, we directly measure the transition frequency
between states |1〉 and |2〉 with a Ramsey error filter (REF)
[14]. The REF uses an oscillation, provides finer resolution,
and is simpler to automate experimentally than for peak
finding in high-power spectroscopy. To increase the |2〉 state
population, the (π )10 pulses (for the |0〉 ↔ |1〉 transitions) are
sufficiently short and do not use the HD protocol. Using this
technique, we measure the |1〉 → |2〉 transition frequency, f21

to within 1 MHz.

APPENDIX B: AMPLIFIED PHASE ERROR THEORY

Our numerical simulations are for a three-level system
with qubit parameters and nonlinearity corresponding to
experimental conditions. We use integration of the Schrödinger
equation to explicitly calculate the time evolution for an
arbitrary input state, which is described by a 3 × 3 unitary
matrix U . With an appropriate Gaussian control pulse, we find
the elements of U that connect the |0〉 or |1〉 state with the
|2〉 state have small magnitude, consistent with the negligible
|2〉 state error as reported previously [14]. The time evolution
of the two qubit states is thus well described by the 2 × 2
submatrix of U . We find that for small phase errors, this
submatrix can be written as

X′
π/2 � ZεXπ/2Zε, (B1)

where Zε is the phase error of interest,

Zε =
(

1 0
0 e−iε

)
. (B2)

Moreover, from these simulations, with control pulses of
length 6 ns and typical nonlinearities �/(2π ) = −200 MHz,
we plot in Fig. 6 the expected phase error versus rotation angle
for an uncorrected Gaussian control pulse. Initially, the phase
error increases parabolically, then saturates and decreases.
Although the maximum occurs at an angle slightly larger than
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FIG. 6. Phase error per pulse from numerical simulations and
APE experiments. (a) Numerical simulation for a three-level qubit
starting in |0〉 and rotating by an angle θ = 0 to π due to a Gaussian
control pulse. The phase error versus rotation angle θ is plotted.
(b) Amplified phase error data. Phase error versus number of ±Xπ/2

pulses is plotted with lines as fits to extract the phase error per pulse
for both Gaussian (solid black) and HD (dashed blue) pulses.

π/2, π/2 pulses were chosen for their important role for
tomography.

Using Eqs. (B1) and (B2), we explicitly calculate the phase
shift for a 2π rotation coming from four π/2 pulses. For an
arbitrary rotation θ about the x axis, the gate operation is

Xθ =
(

cos θ/2 −i sin θ/2

−i sin θ/2 cos θ/2

)
, (B3)

such that X′
π/2 is

X′
π/2 = 1√

2

(
1 −ie−iε

−ie−iε e−i2ε

)
. (B4)

Concatenating four positive π/2 rotations results in

X′4
π/2 ≡ (X′

π/2)4 = 1

4

(
e−6iε(−1 − e2iε − 3e4iε + eiε) −ie−7iε(−1 + e2iε)2(1 + e2iε)
−ie−7iε(−1 + e2iε)2(1 + e2iε) e−8iε(−1 + 3e2iε + e4iε + e6iε)

)
� e−i4εI, (B5)

where I is the identity. Equation (B5) only acquires a global
phase.

Next, we calculate the phase shift for the pseudoidentity
operation, used in the APE protocol, comprising a positive
then a negative θ = π/2 rotation,

I ′
π/2 = X′

−π/2X
′
π/2

=
(

e−iε cos(ε) e−2iε sin(ε)
−e−2iε sin(ε) e−3iε cos(ε)

)

≈
(

1 − iε ε

−ε 1 − 3iε

)
. (B6)

For n applications of the pseudoidentity operation, in the
limit where 0 < ε � 1, ε → nε

I ′n
π/2 ≈

(
1 − inε nε

−nε 1 − 3inε

)
, (B7)

focusing on the relative phase along the diagonal elements,
and by removing an overall global phase,

I ′n
π/2 ≈ (Z2ε)n = Z2nε. (B8)

The measured phase shift scales with the number n of
pseudoidentity operations, or equivalently the number of
applied ±Xπ/2 pulses, as shown in Fig. 6(b).
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FIG. 7. (Color online) Numerical simulations of gate fidelity
for a three-level system with �/(2π ) = −200 MHz. All simulated
pulses are of the DRAG prescription and a fixed length of 6 ns.
The white circle indicates the values, Z = 1 and Y = 1, as
proposed in Ref. [15]. White dotted lines highlight the HD operating
magnitudes.

APPENDIX C: HALF DERIVATIVE

From the numerical simulations described in Appendix C,
we plot in Fig. 7 the gate fidelity defined as F = Tr(χsimχideal)
in a color scale for a range of magnitudes for the Y and
Z controls. The circle in Fig. 7 indicates the values from
the original DRAG prescription, Y = 1 and Z = 1 [15]. We
find there is a ridge of maximum fidelity for the two control
parameters, with peak values of fidelity having a simple linear
relation between the Y and Z values. Along this ridge, the
maximum fidelity is insensitive to Z. We set the Z control to
zero, which simplifies the experimental control procedures as
it reduces the necessary control signals for optimal pulses from
3 to 2.

The Y control provides a dynamic detuning to the qubit,
which keeps the microwave drive and the qubit on resonance
during the gate operation performed by the X control, similar

0
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Z

Y

P1

1

1

0 [arb. units]Zamp

Zamp

Zπ

t

tfixed

2/π 2/π

FIG. 8. Zπ calibration. (a) (Left) The Ramsey-type pulse se-
quence to calibrate a Zπ with the X and Y controls using the HD
protocol described in the manuscript. The sequence consists of two,
6-ns (FWHM) π/2 pulses fixed in time with tfixed = 24 ns and a
6-ns (FWHM) Z pulse centered in between them. The separation
time is chosen to minimize overlap of the pulses. The Zamp increases
incrementally. (Right) The probability of measuring the |1〉 state P1

as a function of Z-pulse amplitude, Zamp. The data are plotted as
points with best fit as a line. P1 oscillates with increasing magnitude
of the Z-pulse amplitude. The arrow indicates the Z-pulse amplitude
equivalent to a π rotation about the Z axis.

to the role the Z control plays in the original DRAG
prescription [15].

By simply using the analytic expression for HD, Y =
−Ẋ/(2�) we reduce the phase error to 1.6◦ per pulse. For
higher phase sensitivity experiments one can utilize the APE
experiment to tune the phase error to zero by adjusting the
magnitude of the Y control.

APPENDIX D: Z-PULSE CALIBRATION

Explicit Z gates are required for the (off-equator) Hadamard
gate. We calibrate our Z pulse as shown in Fig. 8. A static
length (full width at half maximum = 6 ns) with an increasing
amplitude Z pulse inserted between two HD π/2 pulses with
fixed separation time tfixed. The probability of measuring the
|1〉 state P1 oscillates with increasing Zamp [21]. The arrow
indicates the Zamp that corresponds to a rotation angle of π

about the z axis.
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